/************************** MERSENNE.CPP ******************** AgF 2001-10-18 *
* Random Number generator 'Mersenne Twister' *
* *
* This random number generator is described in the article by *
* M. Matsumoto & T. Nishimura, in: *
* ACM Transactions on Modeling and Computer Simulation, *
* vol. 8, no. 1, 1998, pp. 3-30. *
* Details on the initialization scheme can be found at *
* http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html *
* *
* Experts consider this an excellent random number generator. *
* *
* © 2001 - 2004 A. Fog. *
* GNU General Public License www.gnu.org/copyleft/gpl.html *
*****************************************************************************/
#include "randomc.h"
void TRandomMersenne::RandomInit(uint32 seed) {
// re-seed generator
mt[0]= seed;
for (mti=1; mti < MERS_N; mti++) {
mt[mti] = (1812433253UL * (mt[mti-1] ^ (mt[mti-1] >> 30)) + mti);}
// detect computer architecture
union {double f; uint32 i[2];} convert;
convert.f = 1.0;
// Note: Old versions of the Gnu g++ compiler may make an error here,
// compile with the option -fenum-int-equiv to fix the problem
if (convert.i[1] == 0x3FF00000) Architecture = LITTLEENDIAN;
else if (convert.i[0] == 0x3FF00000) Architecture = BIGENDIAN;
else Architecture = NONIEEE;}
void TRandomMersenne::RandomInitByArray(uint32 seeds[], int length) {
// seed by more than 32 bits
int i, j, k;
RandomInit(19650218UL);
if (length <= 0) return;
i = 1; j = 0;
k = (MERS_N > length ? MERS_N : length);
for (; k; k--) {
mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1664525UL)) + seeds[j] + j;
i++; j++;
if (i >= MERS_N) {mt[0] = mt[MERS_N-1]; i=1;}
if (j >= length) j=0;}
for (k = MERS_N-1; k; k--) {
mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1566083941UL)) - i;
if (++i >= MERS_N) {mt[0] = mt[MERS_N-1]; i=1;}}
mt[0] = 0x80000000UL;} // MSB is 1; assuring non-zero initial array
uint32 TRandomMersenne::BRandom() {
// generate 32 random bits
uint32 y;
if (mti >= MERS_N) {
// generate MERS_N words at one time
const uint32 LOWER_MASK = (1LU << MERS_R) - 1; // lower MERS_R bits
const uint32 UPPER_MASK = -1L << MERS_R; // upper (32 - MERS_R) bits
static const uint32 mag01[2] = {0, MERS_A};
int kk;
for (kk=0; kk < MERS_N-MERS_M; kk++) {
y = (mt[kk] & UPPER_MASK) | (mt[kk+1] & LOWER_MASK);
mt[kk] = mt[kk+MERS_M] ^ (y >> 1) ^ mag01[y & 1];}
for (; kk < MERS_N-1; kk++) {
y = (mt[kk] & UPPER_MASK) | (mt[kk+1] & LOWER_MASK);
mt[kk] = mt[kk+(MERS_M-MERS_N)] ^ (y >> 1) ^ mag01[y & 1];}
y = (mt[MERS_N-1] & UPPER_MASK) | (mt[0] & LOWER_MASK);
mt[MERS_N-1] = mt[MERS_M-1] ^ (y >> 1) ^ mag01[y & 1];
mti = 0;}
y = mt[mti++];
// Tempering (May be omitted):
y ^= y >> MERS_U;
y ^= (y << MERS_S) & MERS_B;
y ^= (y << MERS_T) & MERS_C;
y ^= y >> MERS_L;
return y;}
double TRandomMersenne::Random() {
// output random float number in the interval 0 <= x < 1
union {double f; uint32 i[2];} convert;
uint32 r = BRandom(); // get 32 random bits
// The fastest way to convert random bits to floating point is as follows:
// Set the binary exponent of a floating point number to 1+bias and set
// the mantissa to random bits. This will give a random number in the
// interval [1,2). Then subtract 1.0 to get a random number in the interval
// [0,1). This procedure requires that we know how floating point numbers
// are stored. The storing method is tested in function RandomInit and saved
// in the variable Architecture. The following switch statement can be
// omitted if the architecture is known. (A PC running Windows or Linux uses
// LITTLEENDIAN architecture):
switch (Architecture) {
case LITTLEENDIAN:
convert.i[0] = r << 20;
convert.i[1] = (r >> 12) | 0x3FF00000;
return convert.f - 1.0;
case BIGENDIAN:
convert.i[1] = r << 20;
convert.i[0] = (r >> 12) | 0x3FF00000;
return convert.f - 1.0;
case NONIEEE: default:
;}
// This somewhat slower method works for all architectures, including
// non-IEEE floating point representation:
return (double)r * (1./((double)(uint32)(-1L)+1.));}
int TRandomMersenne::IRandom(int min, int max) {
// output random integer in the interval min <= x <= max
int r;
r = int((max - min + 1) * Random()) + min; // multiply interval with random and truncate
if (r > max) r = max;
if (max < min) return 0x80000000;
return r;}